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The creeping motion of a non-Newtonian fluid
past a sphere

B y  B .  C A S W E L L A N D  W. H .  S C H W A R Z
Department of Chemical Engineering, Stanford University, Stanford, California

(Received 22 February 1962)

The equations of motion and continuity are solved together with the slow-flow
stress equations for an incompressible Rivlin-Ericksen fluid. The boundary
conditions for slow flow past a sphere are satisfied by matching inner (Stokes)
and outer (Oseen) Reynolds-number expansions of the stream function. The terms
in the inner expansion are the solutions of non-linear partial differential equations
which are solved approximately by expanding in terms of a non-Newtonian
parameter A. The drag force on the sphere is obtained from the solution.

1. Introduction
Several authors, Ericksen & Rivlin (1955), Oldroyd (1958), No11 (1958),

Green & Rivlin (1960), have introduced properly invariant, kinematic theories
of the stress tensor in non-Newtonian fluids. For one-dimensional, steady-state
flows these theories describe the experimentally observed behaviour of non-
Newtonian fluids, including both the shear-stress-strain-rate relationships and
the normal-stress effect.

In the theory of Rivlin-Ericksen fluids (Ericksen & Rivlin 1955),  the stress is
assumed to be a function of the gradients of velocity, acceleration, second
acceleration, . . . , (n - 1)th  acceleration. The matrix of components of the extra-
stress tensor is given by

T = f&t A,, . . .> A,), (1.1)
where T is defined by

T = S+PI, (1.2)

in which S is the stress tensor and P a scalar hydrostatic pressure. The matrices
A, represent the components of the Rivlin-Ericksen tensors, of which A, is
the familiar rate-of-strain tensor with components

a’?) = 21.03 .+v63 j,j (i,j = 1,%3).

Higher-order A, are constructed from the recurrence relation

The constitutive relation f is usually represented as a polynomial in the A,.
In a creeping motion the velocity vi differs from rest by a small disturbance

&vi. If the A, are evaluated using &vi, the polynomial representation of equation
(1.1) can be approximated to terms of order Svi by the theory of Newtonian
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fluids. If terms of order (SV~)~  and (8~~)~  respectively are retained, the following
stress equations are found for the incompressible case

‘I’ = $,A, + &A2 + q$(AJ2 + O(W2, (1.5)

T = & + &tr (W2] A,+ #2A2 + #3(Al)2  + c&A3  + #,(A,A,  + A, A,) + O(8v03,
(1.6)

where the rji are constants under isothermal conditions.
The theories expounded by No11 (1958) and Green & Rivlin (1960) include

memory effects in which the stress state of the fluid at time t is assumed to depend
on its kinematic state not only at time t but at all times in the past. Under the
assumptions that Noll’s ‘simple fluid’ is in slow motion and has a rapidly fading
memory, Coleman & No11 (1961) have developed an approximation scheme which
gives stress equations identical to those obtained above for the Rivlin-Ericksen
fluids. Green & Rivlin (1960) have shown how their very general memory-
theories can be specialized to give Noll’s theory of simple fluids and also the
theory of Rivlin-Ericksen fluids. Hence sound theoretical reasons exist for using
stress equations (1.5) and (1.6) in the solution of problems of creeping flow of
non-Newtonian fluids.

In a steady-state simple-shearing flow, a non-Newtonian fluid may be charac-
terized by three material functions 7,~~ and (r2. With the F-axis  parallel to the
stream lines and the Xl-axis normal to the shear planes the material functions
are given by

7(K)  = f42, the shear-stress function,

fll(K)  = x11- 833 and Us = S22 - S33, the normal-stress functions,1
(1.7)

all of which are determined by the rate of strain, K, alone. If the stress equation
(1.6) is evaluated for such a flow the following tii may be obtained from the
material functions:

and

$+liiy=qo, \
the zero-shear viscosity,

(q&+&J  = lim {wi*, t
I?-+0

I

(1.8)

the zero-shear normal-stress coefficients. Most normal-stress measurements
reported to date (Philippoff 1961) indicate the existence in simple shear of the
symmetry relation S,, = S,, which from (1.7) allows us to write

$2 = -i%. (1.9)

In addition, the molecular network theory of Lodge (1956) supports normal-
stress symmetry, at least in the region of small rates of strain which is the
domain of the stress equations (1.5) and (1.6).
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2. The equations of motion 
The equations of motion for a creeping flow are usually obtained simply by 

neglecting the inertial terms in the general equations of motion. In  this way, 
and using the stress equations (1 .6)7 Langlois & Rivlin (1  959) have found approxi- 
mate solutions to several flows contained within bounding surfaces. For creeping 
flows exterior to a body it is well known from Newtonian theory that near the 
uniform stream the inertial and viscous forces are of the same order. Uniform 
expansions to the stream function can be obtained by considering the Stokes 
expansions satisfying the no-slip condition at the surface of the body, and 
Oseen expansions satisfying the uniform-stream condition. Proudman 8: Pearson 
(1957) have shown how the two expansions can be matched to give a uniform 
approximation to the flow. 

For the case of the sphere, polar co-ordinates (R,O,$) are chosen with the 
origin at the centre of the sphere and 6 = 0 in the upstream direction. It is 
convenient to work with EL = -cos6' instead of 8. All tensor quantities are 
expressed in terms of their physical components referred to these co-ordinates. 
The equations of motion, continuity and stress are first expressed in terms of 
the Stokes variables defined by 

R = ar, U, = Uu,, u,l = Uu,, !& = (qo Ula) tik, P = (7, Ula)p,  (2.1) 

where a is the radius of the sphere, 'ylo = 4, the zero-shear viscosity, and U is the 
velocity of the uniform stream. 

The stream function @ is defined to satisfy the continuity equation 

with 

If the pressure is eliminated from the steady-state equations of motion and 
the velocities are expressed in terms of @ the following equation is obtained 

rz a(r7,4 r2 
1 a(@, D") + 2 D V - W  

where 

and Re = Uafv,, the Reynolds number based on the zero-shear kinematic vis- 
cosity vo. The stress components T,,, 7PP, etc., represent the non-Newtonian 
part of the stress matrix, which from (1.6) may be written in the new variables as 

T = A(A2, + €,A2) + A'[€, tr (A,)' A, + e3A3 + e4(A1A2 + A,A,)], (2.6) 
where 

A = $3 U/?oa, % = $h/& €2 $670/&, €3 = $4'VO/#k €4 = #5?0/&. (2-7) 
27-2 
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For small Reynolds numbers, the stream function $ is assumed to have an inner 
(Stokes) expansion 

\ 

$(r, lu) = $o(r, lu) +f1(Re) $ l ( Y >  P )  + * * * 7 (2.8) 
where fn+,(Re)/fn(Re) -+ 0 as Re -+ 0. (3.9) 

The Stokes expansion (2.8) is made to satisfy the governing equation (2.4), 
which gives for $o 

where T$, etc., are evaluated from (2.6) in terms of @o. The solution of equation 
(2.10) is the chief object of this paper, and will be attempted in 5 3. 

Oseen variables are defined by 

p = (Re) r ,  and Y = (Re)2 $, (2.11) 

in terms of which the governing equation (2.4) becomes 

= D4Y + Re(non-Newtonian terms), (2.13) 
1 8(Y, D2Y) + 2D2YLY - 

P2 a(P,P) P2 
where D2 and L are the operators defined in (2.5), but with r replaced by p. 
The stream function, Y, in the outer region is assumed to have an Oseen expan- 
sion !r = YO(P, P )  + FlW) Yl(P, P )  + F2(Re) Y 2 ( P ,  P )  + . . * 9 (2.13) 
where F,+,(Re)/F,(Re) + 0 as Re -+ 0. (3.14) 

The nature of the Oseen variables (2.11) is such that p -+ 0 as Re + 0, so that 
in the limit (2.13) describes the flow about a sphere of vanishing radius. There- 
fore, Yo must be the uniform stream 

YO(P,P) = 4P2(1-P2)* (2.15) 

For the moment, Fl is chosen as F,(Re) = Re, with the provision that the un- 
known coefficients in the solution for Yl may be functions of Re. The Oseen 
expansion is now made to satisfy (2.12), which gives for Yl 

(2.16) 

But this is Oseen's equation for a Newtonian fluid with viscosity yo; thus the 
non-linear terms do not influence the flow at large distances from the sphere. 
This result is compatible with the tendency of non-Newtonian fluids toward 
Newtonian behaviour at  low rates of strain. 

3. The leading term in the Stokes expansion 
The solution of equation (2.10) is the leading term $o in the Stokes expansion. 

It must satisfy the no-slip condition on the sphere and match with the leading 
term in the Oseen expansion, the uniform stream Yo, (2.15). The matching 
procedure is based on the idea that 9 and Y are different forms of the same 
function. This requires that @n, expressed in terms of the Oseen variable p, 
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should match with the Y!, for small values of Re. The details of this procedure 
have been illustrated very clearly by Proudman & Pearson, and will not be 
discussed further. 

The non-Newtonian stress matrix (2.6) suggests for $o the form 

$0 = X o o + ~ X o l + ~ Z X o 2 + ~ ~ ~ ~  (3-1) 

representation To = hT01+h2T02+ ..., (3.2) 

which gives D4x00 = 0,  (3.3) 

where h = $3 U/voa < 1, and the ei are assumed to be of order one.* The expan- 
sion (3.1) allows the non-Newtonian stress appearing in (3.10) to have a matrix 

with components T : ~  = h7::+h27::+ ..., etc. The expansions (3.1) and (3.2) are 
substituted into (2.10) and the coefficients of each power of h are equated, 

The solution of equation (3.3) is chosen to satisfy the no-slip condition a t  the 
surface and is matched with the uniform stream (2.15). Clearly xoo must be the 
Stokes solution (Lamb 1932, p. 598) for the Newtonian case, i.e. 

xoo = ~ ( r 2 - ~ r + ~ r - l ) ( 1 - - / L 2 ) .  (3.5) 

(3.6) 

Prom (2.6) the matrix of components of the non-Newtonian stress appearing 
in (3.4) is given by 

TO1 = + E~A!*, 

where AYo and Ago are evaluated in terms of xao, which gives for the components 
of TO1 

3p2 3 1 2 

* This assumption is partially justified in the Appendix. 
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Hence (3.4) becomes 

D4x01 = - 27( 1 + €1) (3.8) 

Because the Newtonian solution, xoo, has already been fully matched with the 
free stream, the non-Newtonian terms xol, xo2, . . . , in $o must not contribute to 
Yo. This also satisfies the requirement of Oseen's equation for Newtonian 
behaviour near the free stream. A solution to (3.8) satisfying the no-slip con- 
dition at T = 1, and which does not contribute to Yo is 

x o 1 =  - g ( l + € l )  1-- p ( l - p 2 ) .  ( 7 t ) 3  (3.9) 

I1 

- 174 
14 

370 
- 106 
- 250 

144 
0 
0 

- 16 
198 

167 
162 

- 87 
0 
0 

- 420 

I11 

35 
-216 

400 
- 174 
- 165 

120 
0 
0 

- 40 
243 

- 88512 
204 
138 

- 102 
0 
0 

I V  

0 
54 
0 

- 168 
0 

60 
0 

68 
0 

- 54 
0 

165 
0 

- 42 
0 

- 30 

V 

- 7  

18 
- 61/2 

0 
9 
0 
0 
8 

- 20 
12714 

0 
- 1712 

0 
0 

2112 

- 45/4 

VI 

- 54 
475/4 
20114 

76 

3514 
13 

24314 

- 86914 

93/4 

- 126 
- 28514 
194318 
- 45918 
- 54 

- 4514 
- 512 

The equation for xO2 is analogous to (3.4), and contains the components 7:, 

etc., of the non-Newtonian stress matrix 

TO2 = A ~ 1 A ~ o + A ~ o A ~ 1 + ~ 1 A 0 , 1 ~ 0 0 + ~ 2 t r  (A~)zA~+s ,A~o+s4(A~oA0,0+A0,0A~o) ,  
(3.10) 

where A!', A!', A:O, etc., are evaluated in terms of xoo and xol. The resulting 
differential equation for xoz is 

13 

n= 6 
D4x02 = C [b ,+~ , ( l -p~) l r -~ ( l -p~) ,  (3.11) 

where the coefficients b, and c, are given in table 1. A solution to (3.11) satisfying 
the no-slip condition at T = 1, and which does not contribute to the free stream, is 

9 

m=-1 
[ ( 1 - p 2 ) - $ ] 6 r - 3 h r +  S [/3m+ym(l-p2)]~-m) (l-p2), (3.12) 

where 6, pm, and ym are shown in table 2. 
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I I1 I11 IV V VI  

s - 1.5714 - 1.9286 0.4286 0.0893 1~0000 
P-1 0.2419 0.2983 - 0.0431 - 0.0138 - 0.4570 
PI - 0.5148 - 0.5568 0.1171 0.0049 1.5364 
P z  - 0.2500 - 0.6250 0 0.1250 - 0.5812 
P 3  - 0.6948 - 0.3932 0.0947 - 0.1526 - 0.5129 
P 4  1.4472 1.5389 0 0.0694 0.2281 

P s  -0.1150 - 0'0808 0 0 0.0362 
P 7  0.0359 0.0319 0.0153 0-0024 0.0084 

P 9  0 0 0.0064 0 0.0013 

P 5  - 0.1504 - 0'2132 - 0.1905 - 0.0354 - 0.2605 

P S  0 0 0 0 0.0012 

Y-1 0 0 0 0 0 
- 0.3624 Y l  0.0392 - 0-061 1 - 0'0400 

Yz 0.3333 0.8333 0 - 0.1667 - 0.1266 
7 3  1.1019 0.7670 - 0.1528 
Y4 - 1.7500 - 1.8437 0 - 0.0833 - 0.2969 

0.0321 

0.1802 0.5285 

Y5 0.2109 0.2576 0.2083 0.0401 0.3067 
7 6  0.0900 0.0767 0 0 - 0.0319 
Y7 - 0.0253 - 0.0297 - 0.0122 - 0.0025 - 0.0157 
Ys 0 0 0 0 - 0.0004 
Y9 0 0 - 0.0032 0 - 0.0012 

I =  (27/4) (I+€,) (II)+(27/2) (1+€1) €,(III)+(27/2) (€2+€4)  (IV)+27€a(V)+6€,(VI) 
TABLE 2 

4. Higher terms in the Oseen and Stokes expansions 
Since the matching procedure for the inner and outer expansions involves 

only the Newtonian terms, the solution to Oseen's equation (2.16) will be that 
given by Proudman & Pearson 

Y, = -$( 1 +p) [I - exp { - &p( 1 -p)}]. (4.1) 

The coefficient fl in the Stokes expansion is set as fl(Re) = Re with the same 
provision made on Fl in $2.  The governing equation (2.4) yields, for $1, 

The terms of O(h)  on the left are evaluated from the non-Newtonian stressmatrix 
(2.4) using $o = xoo + Axol, and $1, and hence will be linear in the derivatives of 

with coefficients which are functions of r and p. The terms on the right of 
(4.2) are evaluated from the inertial terms of (2.6) using $o. The first term is the 
Newtonian contribution, and the terms of O(h)  are obtained from xol. 

In  this paper terms of O(h)  in $, will be neglected by imposing the restriction 

Re < h2 4 A, (4.3) 

which is equivalent to a2 4 $%Id, (4.4) 

where d is the density of the fluid. Condition (4.4) is easily achieved experi- 
mentally by choosing a small enough sphere. 
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Under the above restriction, (4.2) reduces to the Newtonian case. Its solution, 
properly matched with Yl, is given by Proudman & Pearson as 

(1--p2), (4.5) 

where $l has been put in the form $l = x10 + Axll + . . . , to conform with (3.1). 

5. The stream function 
The stream function has now been determined in the form 

$ = xOO + Axol + h2xoz + W3) + Rexlo + W R e ) ,  (5.1) 

or from (3.5), (3.9), (3.12), and (4.5) 

$ = ( 1  -p2) [ i ( r -  ((1 +$Re) (2 +:) - $Re( 2 + f +;) ,u 

3h 
3r3 

- - ( 1  +el) (r - 1) ,u [( 1 - ,u2) - $1 W l n  r 

(5.2) 

An interesting property of the flow is the possibility of the formation of eddies 
behind the sphere. The stream function $ has zeros a t  ,u = & 1 and on the surface 
r = 1; in addition it vanishes along the real curve whose polar equation is 

__ ~ 

(+Re + 1) (3r3 + r2)  
l C  = ~ 2 r 3 + r 2 + r + ( 4 h / R e ) ( 1 + e 1 ) ( r - 1 ) ’  (5.3) 

and this curve forms the boundary of the eddies. The term in h2 was dropped 
from (5.2) to obtain (5.3). For h < 1 this will be a small correction so that (5.3) 
is sufficient to determine the existence of eddies. The minimum of (5.3) occurs 
when 

where a = (4h/Re) (el+ 1). 

( 5 . 4  4 ( a + 1 ) r 2 + ( 1 - 5 ~ ) r - 2 a  = 0, 

Two cases are considered. 
(1) h = Re: by (1.9) el = -4 and a = 2,  from (5.4) T = 1.06, hence 

,urnin z (3/Re) + 2 which means h = Re z 8. 

(2) h = 10Re: a = 20, r = 1.5, ,urnin = (1.16/Re)+0.44, hence Re = 2.1, 
h = 21. 
Cases 1 and 3 show that eddies can form only at values of Re and h which are well 
beyond the theory of slow motions and slight deviations from Newtonian 
behaviour from which $was obtained. Therefore, it  is not possible to claim that 
equation (5.3) gives even a qualitative description of the flow for such large values 
of these parameters. Leslie (1961) has investigated the flow around a sphere 
using the Oldroyd (1958) model, and has obtained a solution by expanding in 
terms of a parameter similar to A. His first correction to the Newtonian solution 
is identical to xOl and the second is qualitatively similar to x02. Leslie has plotted 
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these functions for reasonable values of the parameters of Oldroyd’s model, 
and finds the stream function differs only slightly from the Stokes solution with 
no eddies appearing behind the sphere. 

6. The drag force on the sphere 
The fluid will exert a drag force on the sphere which can be computed from 

which may be expressed in the notation of (5.1) as 

D/27ray0 U = do, + Ad,, + A2dO2 + . . . + Re d,, + M e  d,, + . . . , (6.2) 

where the dij  are constants given by 

d . .  LJ = j:, [(flA%=lP+ (fl:j)?=1(1 +PI dP7 (6.3) 

in which Xf!, fl$ are components of the stress tensor (1.2) expanded in similar 
fashion to (3.2). For i = 0,  this gives do, = 3, do, = 0 and 

do, = 13*5[4.5278(1+ 2 . 4 5 2 8 ~ ~ )  (1 +el) + 3.0984(~, + c4) - 1.0296~4 - 5.6160~31, 
(6.4) 

for i = 1, d 10 - 3  - 8’  (6.5) 

The final expression for the drag is 

+ 3.0984($,+$,) -5.616044- 1.02964, , (6.6) 1 
which is Stokes law with a small Reynolds-number correction and a term in U3 
whose coefficient involves the non-Newtonian parameters, of which q54 and 4, 
cannot be obtained from simple shear flows, and so the magnitude of the term 
cannot be estimated from available experimental data. 

The drag expression (6.6) is complete in the sense that the non-Newtonian 
parameters of the higher approximations to the stress equation (1.6) do not 
affect the drag until terms in A3 are considered. This makes it an experimentally 
useful formula. 

Leslie computed the drag from his solution for the Oldroyd model, and 
obtained a non-Newtonian term proportional to U3. Hence slow-flow drag-force 
measurements may be interpreted using either the Oldroyd or Rivlin-Ericksen 
models with equal justification, a state of affairs which is not too surprising since 
both models predict Newtonian behaviour in the limit of very slow flow. The 
domain of the solutions presented here and in Leslie’s work covers the region 
only slightly beyond the Newtonian limit; therefore, it  is not unreasonable that 
both models should approach this limit in similar fashion. 
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Appendix 
The data of Philippoff (1956) on a 15 % solution of polyisobutylene (B-100) 

in decalin at  30°C has been analysed using the relationships (1.8) between 
material functions and the constants &. This gives 

= ro = 9320poise, 

d3 = 45,00Odyn~m-~sec~ (assuming q52 = - +q5,), 
$5 + $6 = 22,000 dyn cm-2 sec3; 

hence €2 + €4 = ($5 + $6) TO/$! = OelO. 

The coefficient $4 cannot be estimated from simple shear data, and $5 and q56 
cannot be obtained individually. 

The authors gratefully acknowledge the support of the National Science 
Foundation for this work. 

R E F E R E N C E S  

COLEMAN, B. D. & NOLL, WALTER 1961 Ann. New York Acad. Sci. 89, 672. 
ERICKSEN, J. L. & RIVLIN, R. S. 1955 J .  Rat. Mech. Anal. 4, 323. 
GREEN, A. E. & RNLIN, R.  S. 1960 J .  Rat. Mech. Anal. 4, 387. 
LAMB, Sir HORACE 1932 Hydrodynamics, 6th ed. New York: Dover. 
LmaLoIs, W. E. & RNLIN, R. S .  1959 Tech. Rep. No. 3, D i n  Appl. Math. Brown. Univ. 
LESLIE, F. M. 1961 Quart. J .  Mech. Appl .  Math. 14, 36. 
LoDaE, A. s. 1956 Tram.  Faraduy soc .  52, 120. 
NOLL, WALTER 1958 Arch. Rat. Mech. Anal. 2, 197. 
OLDROYD, J. G .  1958 Proc. Roy. Soc. A, 245, 278. 
PHILIPPOFF, WLADIMIR 1956 J. Appl. Phys. 27, 984. 
PHILIPPOFB, WLADIMIR 1961 Trana. SOC. Rheo. 5, 149. 
PROUDMAN, IAN & PEARSON, J. R .  A. 1957 J .  Fluid Mech. 2, 237. 


